Presented by
Shivkumar P. Bias
Asst. Prof.
Department of Physics

• Dr. H.N.Sinha College Patur

1

The Three Hallmarks of Superconductivity

Zero Resistance

Temperature Kelvin The Kamerlingh Onnes resistance measurement of mercury. At 4.15K the resistance suddenly dropped to zero

Perfect Diamagnetism

Magnetic Fields and Superconductors are not generally compatible

What are the Limits of Superconductivity?

BCS Theory of Superconductivity

Bardeen-Cooper-Schrieffer (BCS)

Cooper Pair

s-wave ($\ell = 0$) pairing

Spin singlet pair

Second electron is attracted to the concentration of positive charges left behind by the first electron

First electron polarizes the lattice

 $T_c \cong \Omega_{Debye} e^{-1/NV}$

 Ω_{Debye} is the characteristic phonon (lattice vibration) frequency N is the electronic density of states at the Fermi Energy V is the attractive electron-electron interaction

A many-electron quantum wavefunction Ψ made up of Cooper pairs is constructed with these properties:

An energy $2\Delta(T)$ is required to break a Cooper pair into two quasiparticles (roughly speaking)

Cooper pair size: $\xi = v_F \cdot \frac{\hbar}{\Delta}$

6

Where do we find Superconductors?

Also:

7

Nb-Ti, Nb₃Sn, A₃C₆₀, NbN, MgB₂, Organic Salts $((TMTSF)_2X, (BEDT-TTF)_2X)$, Oxides (Cu-O, Bi-O, Ru-O,...), Heavy Fermion (UPt₃, CeCu₂Si₂,...), Electric Field-Effect Superconductivity (C₆₀, [CaCu₂O₃]₄, plastic), ...

Most of these materials, and their compounds, display spin-singlet pairing

The High-T_c Cuprate Superconductors

Layered structure – quasi-two-dimensional Anisotropic physical properties Ceramic materials (brittle, poor ductility, etc.) Oxygen content is critical for superconductivity

Spin singlet pairing d-wave ($\ell = 2$) pairing

YBa₂Cu₃O_{7-δ}

Tl₂Ba₂CaCu₂O₈

Two of the most widely-used HTS materials in applications

